BACTERIAL MAGNETOSOMES

Magnetospirillum sp. strain AMB-1

Anežka Džarová

supervisor: Dr M. Timko

Our research interests in the section of the magnetism:

preparation magnetic particles :

biomineralizations (natural mag. particles)

a new biological magnetic particles (magnetosomes) was found as a product of biomineralization process from magnetotactic bacteria. The encapsulation of magnetosomes within the organic membrane provides a natural coating, which ensures superior dispersibility of the Fe3O4 particles and provides excellent target for immobilization biologically active substances

Dendrogram

Blakemore (1975)

 they are constituents of natural microbial communities in sediments and chemically stratified water columns and a broad diversity of morfological forms has been found in many marine and freshwater habitats

 MTB orient and migrate along geomagnetic field lines – this ability is based on intracellular magnetic structures known as –

MAGNETOSOMES

[an intracellular single-magnetic-domain crystal of a magnetic iron mineral (the magnetite) to be enclosed by a membrane (a lipid bilayer admixed with proteins) the membrane is intracellular and may be connected to the cytoplasmic membrane]

AMB-1 have single chain of magnetosomes longitudinally traverses the cell

In my experiments magnetosomes were prepared from MTB strain Magnetotacticum Magnetospirillum :

- heterogeneous group of Gram-negative bacteria
- group of aquatic prokaryotes

 strain AMB-1 is Gram-negative a-proteobacterium that more oxygen-tolerant

In our experiment for cultivation *Magnetotacticum Magnetospirillum* sp. AMB-1 we used medium consisted of (per 1 L medium):

10 mL Wolfe's vitamin solution 5 mL Wolfe's mineral solution 0.68 g KH₂PO₄ 0.848 g sodium succinate hexahydrate 0.575 g sodium tartrate dihydrate 0.083 g sodium acetate trihydrate 0.225 mL 0.2% (w/v) resazurin (aqueous) 0.17 g NaNO₃ 0.04 g ascorbic acid 2 mL 0.01 M ferric quinate (quinic acid + FeCl₃.6H₂O)

- 44151 63, 2.3.
- resazurin was added to media as colorimetric indicator of redox potential
- the pH was adjusted to 6.75 with NaOH
- this medium was prereduced under nitrogen for a period of 1 hour, using copper as a reducing agent, and was subsequently dispensed into culture tubes in an anaerobic hood
- inoculated tubes were incubated at 25°C for a period of 4 days

Techniques for the isolation and purification of magnetosome particles from *Magnetotacticum Magnetospirillum* species:

Karen Grünberg, Cathrin Wawer, Bradley M. Tebo, Dirk Schüler, *A large Gene Cluster Encoding Several Magnetosome Proteins Is Conserved in Different Species of Magnetotactic Bacteria*, App. Environ. Microbiol. 2001, 67(10):4573-4582

• are based on magnetic separation or a combination of a sucrose-gradient centrifugation and a magnetic separation technique

MAGNETOSOMES:

The prepared magnetosomes in our laboratory were examined by TEM , XRD, IČ, SEM, DLS (Dynamic light scattering) and magnetic measurement were examined by SQUID magnetometer Quantum Design:

 comprise nanometer –sized, membrane-bound crystals
(bacterial magnetic particles) of the magnetic iron minerals magnetite (Fe₃O₄)

TRANSMISION ELECTRON MICROSCOPY

• the mean size of our magnetosomes estimated from TEM was 34 nm

SCANNING ELECTRON MICROSCOPY

• the mean size of our magnetosomes estimated from SEM was 35 nm

X-RAY DIFFRACTION

• the mean size of our magnetosomes estimated from and XRD 37 nm

SCHERRER EQUATION:

D=0.9 λ / β cos θ

1 - Particles 2 - Magnetosomes 3 - Nanorods 1 - 2 40 - 50 - 60 - 70 - 80 2 theta

- λ wavelenght of the incident X-ray
- Θ diffraction angle
- β full-width at half-maximum of corresponding diffraction peaks

DLS (Dynamic light scattering)

Magnetic properties were examined by SQUID magnetometer Quantum Design:

- the saturation magnetization of the magnetosomes was estimated to be 62 emu/g what is smaller than for chemically synthetized magnetite 75 emu/g at room temperature due to presence of nonmagnetic organic layer
- the curve of field dependence of magnetization at 293 K exhibited the remanence of 21 emu/g

coercivity of 185 Oe what is connected with fact that the mean diameter (34 nm) is larger than critical size for transition from superparamagnetic to ferrimagnetic behaviour

Cultivation *Magnetotacticum Magnetospirillum* sp. AMB-1:

() a ...

10.3.0

20.3.03

1ml

2009 3 23

10 mL Wolfe's vitamin solution 5 mL Wolfe's mineral solution 0.68 g KH₂PO₄ 0.848 g sodium succinate hexahydrate 0.575 g sodium tartrate dihydrate 0.083 g sodium acetate trihydrate 0.225 mL 0.2% (w/v) resazurin (aqueous) 0.17 g NaNO₃ 0.04 g ascorbic acid 2 mL 0.01 M ferric quinate (quinic acid + FeCl₃.6H₂O)

+95 ~ wns 12.3.09 1.5 ml + Q5 mb WVS 12.3.09 2 ml po 6 dňoch + WVS +WMS 2009 3 18

The influence of magnetite nanoparticles on human leukocyte activity

Number of leukocytes/ml for incubation in CO_2 at 37°C

K – control sample

MM – sample of leukocytes with magnetosomes (bacterial magnetite nanoparticles) of concentration: 0,1, 1, 10, 20 μ g/ml MK – sample of leukocyte with synthetic magnetic nanoparticles of concentration: 0,1, 1, 10, 50 μ g/ml

Number of phagocytosing cells from 100 phagocytes

Number of engulfed cells per one leukocyte

K – control sample

MM – sample of leukocytes with magnetosomes (bacterial magnetite nanoparticles) of concentration: 0,1, 1, 10, 20 μ g/ml

MK – sample of leukocyte with synthetic magnetic nanoparticles of concentration: 0,1, 1, 10, 50 μ g/ml

Lyzozyme activity expressed change of absorbance (410 nm) after 20 minutes of reaction

Peroxidase activity expressed change of absorbance (490 nm) after 20 minutes of reaction

K – control sample

MM – sample of leukocytes with magnetosomes (bacterial magnetite nanoparticles) of concentration: 0,1, 1, 10, 20 μ g/ml MK – sample of leukocyte with synthetic magnetic nanoparticles of concentration: 0,1, 1, 10, 50 μ g/ml

CONCLUSION:

- successful cultivation and isolation
- magnetosome in MTB are arranged in straight chains
- after isolation from MTB those chains tend to form closed loops
- the mine size is 34 nm (TEM, SEM) or 37 nm (XRD)
- saturation magnetization of the magnetosomes Ms=62 emu/g
- coercivity Hc=185 Oe
- remanence Mr= 21 emu/g
- the both tested samples lysed (killed) leukocyte cells during incubation. From obtained results follow that spherical nanoparticles are more aggressive material than magnetosomes

PUBLICATIONS:

- <u>TIMKO, Milan</u> <u>DŽAROVÁ, Anežka</u> <u>ZÁVIŠOVÁ, Vlasta</u> <u>KOVÁČ, Jozef</u> <u>ŠPRINCOVÁ</u>, Adriana - <u>KONERACKÁ, Martina</u> - <u>KOPČANSKÝ, Peter</u> – <u>TOMAŠOVIČOVÁ</u>, Natália -<u>GOJZSEWSKI</u>, Hubert – SKUMIEL, Andrzej – JOZEFCZAK, Arkadiusz – VÁVRA, Ivo Magnetic Properties and Heating Effect in Bacterial Magnetic Nanoparticles. In. *Journal of Magnetism and Magnetic Materials*, 321 (2009) 1521–1524
- <u>KOPČANSKÝ, Peter</u> <u>TOMAŠOVIČOVÁ, Natália</u> <u>KONERACKÁ, Martina</u> <u>ZÁVIŠOVÁ, Vlasta</u> - <u>TIMKO, Milan</u> - <u>DŽAROVÁ, Anežka</u> - <u>ŠPRINCOVÁ, Adriana</u> - ÉBER, N. - FODOR-CSORBA, K. - TÓTH-KATONA, T. - VAJDA, A. - JADZYN, Jan. Structural changes in the 6CHBT liquid crystal doped with spherical, rodlike, and chainlike magnetic particles. In *Physical Review E*. ISSN 1539-3755, 2008, vol. 78, part 1, p. 011702-1-5.
- <u>TIMKO, Milan</u> <u>DŽAROVÁ, Anežka</u> <u>KOPČANSKÝ, Peter</u> <u>ZÁVIŠOVÁ, Vlasta</u> <u>KONERACKÁ, Martina</u> <u>KOVÁČ, Jozef</u> ŠPRINCOVÁ, Adriana VACLAVÍKOVÁ, Miroslava IVANIČOVÁ, Lucia VÁVRA, Ivo. Magnetic Properties of Magnetite Formed by Biomineralization and Chemical Synthesis. In *Acta Physica Polonica A*. ISSN 0587-4246, 2008, vol. 113, no. 1, p. 573-576.

• <u>TIMKO, Milan</u> - <u>DŽAROVÁ, Anežka</u> - <u>KOVÁČ, Jozef</u> – <u>KOPČANSKÝ, Peter</u> - <u>GOJZSEWSKI</u>,, Hubert – SZLAFEREK , Andrzej. Magnetic Properies of Bacterial Nanoparticles, In *Acta Physica Polonica A*, 2009, vol 115, no. 1, 381-383

<u>TIMKO, Milan</u> - <u>DŽAROVÁ, Anežka</u> - <u>ZÁVIŠOVÁ, Vlasta</u> - <u>KONERACKÁ, Martina</u> - <u>ŠPRINCOVÁ, Adriana</u> - <u>KOPČANSKÝ, Peter</u> - <u>KOVÁČ, Jozef</u> - VÁVRA, Ivo - SZLAFEREK, A. Magnetic properties of bacterial magnetosomes and chemosynthesized magnetite nanoparticles. In *Magnetohydrodynamics*. ISSN 0024-998X, 2008, vol. 44, no. 2, p. 113-120.

<u>DŽAROVÁ, Anežka</u> - <u>TIMKO, Milan</u> - <u>ŠPRINCOVÁ, Adriana</u> - <u>KOPČANSKÝ, Peter</u> - <u>KOVÁČ, Jozef</u> - <u>KONERACKÁ, Martina</u> - VACLAVÍKOVÁ, Miroslava - VÁVRA, Ivo.
Formation and magnetic properties of magnetosomes. In *Materials Structure in Chemistry, Biology, Physics and Technology*. ISSN 1211-5894, 2008, vol. 15, no. 1, p. 10-12.

Thank you for your attention

