

Oddelenie teoretickej fyziky výsledky za rok 2016

Ján Nemčík

Výročná konferencia ÚEF SAV, Košice, 15. december 2016

Oddelenie teoretickej fyzikyvýsledky za rok 2016 – p. 1/51

Personálne zloženie

vedeckí pracovníci:
 Hana Čenčariková, Pavol Farkašovský,
 Michal Hnatič, Marián Jurčišin, Eva Jurčišinová,
 Peter Kopčanský, Martin Kupka, Ján Nemčík,
 Richard Pinčák, Milan Stehlík
 [8,25 FTE (7,25 FTE - bez P.K.)]

Personálne zloženie

• vedeckí pracovníci: Hana Čenčariková, Pavol Farkašovský,

Michal Hnatič, Marián Jurčišin, Eva Jurčišinová, Peter Kopčanský, Martin Kupka, Ján Nemčík, Richard Pinčák, Milan Stehlík [8,25 FTE (7,25 FTE - bez P.K.)]

• doktorandi:

Michal Dančo (Hnatič) Lukáš Mižišin [PF UPJŠ] (Hnatič) Viktor Khmara [PF UPJŠ] (Hnatič) Šarlota Biršteinová [PF UPJŠ] (Hnatič) Michal Křelina [FJFI ČVUT] (Nemčík) - obhájený [June 2016] Martin Menkyna (Jurčišin)

Silne korelované elektrónové systémy (SCES), modelovanie z prvotných princípov (Density Functional Theory)
 Pavol Farkašovský, Hana Čenčariková

Silne korelované elektrónové systémy (SCES), modelovanie z prvotných princípov (Density Functional Theory)
 Pavol Farkašovský, Hana Čenčariková

 Stochastické a klasicko-mechanické systémy: štúdium univerzálnych zákonitostí, fázových prechodov a kritických javov
 Michal Hnatič, Marián Jurčišin, Eva Jurčišinová, Richard Pinčák

Silne korelované elektrónové systémy (SCES), modelovanie z prvotných princípov (Density Functional Theory)
 Pavol Farkašovský, Hana Čenčariková

 Stochastické a klasicko-mechanické systémy: štúdium univerzálnych zákonitostí, fázových prechodov a kritických javov
 Michal Hnatič, Marián Jurčišin, Eva Jurčišinová, Richard Pinčák

Teória štrukturalizačných javov v systémoch nanočastíc
 Peter Kopčanský

 Supratekutost' a supravodivost', fyzika nehomogénnych tuhých látok Martin Kupka

 Supratekutost' a supravodivost', fyzika nehomogénnych tuhých látok Martin Kupka

Jadrové efekty v procukcii častíc
 Ján Nemčík

 Supratekutosť a supravodivosť, fyzika nehomogénnych tuhých látok Martin Kupka

Jadrové efekty v procukcii častíc
 Ján Nemčík

Fulerény, nanotrubky, grafény
 Elektrónové prenosy vo fotosyntetických reakčných centrách
 Richard Pinčák

 Supratekutosť a supravodivosť, fyzika nehomogénnych tuhých látok Martin Kupka

Jadrové efekty v procukcii častíc
 Ján Nemčík

Fulerény, nanotrubky, grafény
 Elektrónové prenosy vo fotosyntetických reakčných centrách
 Richard Pinčák

• Vysokoenergetické častice vo vesmíre Milan Stehlík

Vybrané vedecké výstupy

E. Jurcisinova, M. Jurcisin;

Single-point ground states and residual entropies in the antiferromagnetic Ising model with multisite interaction on the tetrahedral chain: exact results. Journal of Statistical Mechanics, num. 1, 013101 (2016). [IF(2015) = 2.091, Q1P]

E. Jurcisinova, M. Jurcisin;

Exact results for the spin-1 Ising model on pure "square" Husimi lattices: Critical temperatures and spontaneous magnetization.

Physica A, vol.444, p. 641-653 (2016). [IF(2015) = 1.785, Q2]

 E. Jurcisinova, M. Jurcisin, R. Remecky; Turbulent Prandtl number in A Model od passive vector admixture. Physical Review E, vol. 93, 033106 (2016). [IF(2015) = 2.253, Q1P]

E. Jurcisinova, M. Jurcisin;

Spin-1 Ising model on tetrahedron recursive lattices: Exact results. Physica A, vol. 461, p.554-568 (2016). [IF(2015) = 1.785, Q2]

- E. Jurcisinova, M. Jurcisin;
 Geometric frustration effects in the spin-1 antiferromagnetic Ising model on the kagome-like recursive lattice: Exact results.
 Journal of Statistical Mechanics, num. 9, 093207 (2016). [IF(2015) = 2.091, Q1P]
- E. Jurcisinova, M. Jurcisin;
 Diffusion in anisotropic fully developed turbulence: Turbulent Prandtl number.
 Physical Review E, vol.94, 043102 (2016). [IF(2015) = 2.253, Q1P]

Vybrané vedecké výstupy

- V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik;
 Drell-Yan process in pA collisions: The path integral treatment of coherence effects.
 Physical Review D, vol. 94, 114009 (2016) [IF(2015) = 4.506, Q1P]
- E. Basso, V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik; Nuclear effects in Drell-Yan pair production in high-energy pA collisions. Physical Review D, vol. 93, 094027 (2016). [IF(2015) = 4.506, Q1P]
- E. Basso, V.P. Goncalves, J. Nemchik, R. Pasechnik, M. Sumbera;
 Drell-Yan phenomenology in the color dipole picture revisited.
 Physical Review D, vol. 93, 034023 (2016). [IF(2015) = 4.506, Q1P]
- P. Farkasovsky;

Enhancement of d-wave pairing correlations by charge and spin ordering in the spin-one-half Falicov-Kimball model with Hund and Hubbard coupling. EuroPhysics Letters 115, 37006 (2016). [IF(2015) = 1.963, Q1P]

P. Farkasovsky;

Influence of Spin Ordering on Superconducting Correlations in the Spin-One-Half Falicov-Kimball Model with Hund and Hubbard Coupling J. of Superconductivity and Novel Magnetism, vol. 29, 3309 (2016). [IF(2015) = 1.1, Q3]

 H. Cencarikova, J. Strecka, M. Lyra; Reentrant phase transitions of a coupled spin-electron model on doubly decorated planar lattices with two or three consecutive critical points
 J. of Magnetism and Magnetic Materials, 401, 1106 (2016). [IF(2015) = 2.357, Q1P]

IEP SAS

Vybrané vedecké výstupy

- M. Bundzel, T. Kasanicky, R. Pincak;
 Using string invariants for prediction searching for optimal parameters.
 Physica A, vol. 444, p.680-688 (2016). [IF(2015) = 1.785, Q2]
- K. Kanjamapornkul, R. Pincak, E. Bartos; The study of Thai stock market across the 2008 financial crisis. Physica A, vol. 462, p.117-133 (2016). [IF(2015) = 1.785, Q2]
- K. Kanjamapornkul, R. Pincak; Kolmogorov space in time series data. Mathematical Methods in the Applied Sciences, 1-21 (2016). [IF(2015) = 1.07, Q3]
- A. Sepehri, R. Pincak; Modeling the Electron Transport in Nanostructures by Using the Concept of BIons in M-theory.
 International Journal of Theoretical Physics, ... (2016) [IF(2015) = 1.041, Q2]
- A. Sepehri, R. Pincak, A.F. Ali; Emergence of F(R) gravity-analogue due to defects in graphene. European Physical Journal B, vol. 89, 250 (2016) [IF(2015) = 1.223, Q2]
- N. Tomasovicova, ... R. Pincak, ...;
 Biasing a ferronematic a new way to detect weak magnetic field. Soft Matter, vol. 12, p.5780-5786 (2016). [IF(2015) = 3.798, Q1]

Vybrané vedecké výstupy

- N.V. Antonov, M. Hnatic, A.S. Kapustin, T. Lucivjansky, L. Mizisin; Directed percolation process in the presence of velocity fluctuations: Effect of compressibility and finite correlation time. Physical Review E, vol. 93, 012151 (2016). [IF(2015) = 2.253, Q1P]
- M. Danco, M. Hnatic, M.V. Komarova, T. Lucivjansky, M.Y. Nalimov; Superfluid phase transition with activated velocity fluctuations: Renormalization group approach.
 Physical Review E, vol. 93, 012109 (2016). [IF(2015 = 2.253, Q1P]
- M. Hnatic, P. Zalom;
 Helical turbulent Prandtl number in the model of passive vector advection. Physical Review E, vol. 94, 053113 (2016). [IF(2015 = 2.253, Q1P]
- M. Hnatic, J. Honkonen, T. Lucivjansky;
 Advanced field-theoretical methods in stochastic dynamics and theory of developed turbulence
 Acta Physica Slovaca, 66, No.2, 69-264 (2016) [review article] [IF(2015) = 0.500, Q3]
- M. Kupkova, M. Hrubovcakova, M. Kupka; The Effect of Corrosion in Hank's Solution on the Bending Stiffness of Bars from Sintered Iron-Manganese Alloys. Materials Science Forum 844, p.46-49 (2016). [IF(2015) = 0.330]

Vybrané vedecké výstupy

• OTF (bez P.K.)

18 CC publications (IF > 1.25)
22 CC publications (IF > 0.00)

8 CC publications without IF

• Počet publikácií (IF > 1.25)/FTE = 2.5 (bez P.K.) Počet publikácií (IF > 0.00)/FTE = 3.0 (bez P.K.)

Monografie, kapitoly

 J. Smotlacha, R. Pincak; chapter: Electronic Properties of Carbon Nanostructures. in book- Recent Advances in Graphene Research, Ed. by Pramoda Nayak, ISBN 978-953-51-2639-3, Intech (2016).

Ohlasy na vedecké výstupy

SCES

- cca 20 citácií

Stochastické a klasicko-mechanické systémy: štúdium univerzálnych zákonitostí, fázových prechodov a kritických javov

- cca 100 citácií

Teória štrukturalizačných javov v systémoch nanočastíc

- cca 120 citácií
- Supratekutost' a supravodivost', fyzika
- nehomogénnych tuhých látok
- cca 5 citácií

Jadrové efekty v procukcii častíc

- cca 55 citácií

Ohlasy na vedecké výstupy

- Fulerény, nanotrubky, grafény
- cca 20 citácií
- Vysokoenergetické častice vo vesmíre
- cca 5 citácií

SPOLU - cca 200 citácií (bez P.K.)

Počet citácií/FTE = 27.6 (bez P.K.)

А			В				С			D	Е	F	G	Н	J	K	L
Skupina Meno, vek, FTE			celk WOS publ.	Poče	et WOS I	publiká odľa S	ácií 201(CIMAC	6, klasif 30	ïkácia	Počet APVV A/B	Bilateral BAPVV/ MAD	Počet COST . iné	Počet EU 2020 R/P	Počet PhD	Celkový počet citácií	Počet citácii 2015	h- index WOS
				Q1	Q2	Q3	Q4	Σ	Q1P								
Oddelenie teoretickej fyziky celkovo			13	6	3		22	12	1/1				6				
FTE = 7,25 oddelenie/FTE			1,8	0,8			3,0	1,7									
Čenčariková	-	1,0	33	1				1	1						92	6	6
Farkašovský	-	1,0	78	1		1		2	1						297	15	14
SCES		2,0		2		1		3	2								
Skup./FTE		2,0		1,0				1,5	1,0								
Hnatič	-	0,2	65	3		1		4	3					4	839	34	12
Jurčišin	-	1,0	79	4	2			6	2					1	271	45	12
Jurčišinová	-	1,0	50	4	2			6	2						44	20	8
Pinčák	-	1,0	38	1	4	1		6							102	20	8
QFT+stoch.		3,2		8	6	2		16	7					5			
Skup./FTE		3,2		2,5	1,9			5,0	2,2								
Kupka	-	1,0	50												54	1	6
Nemčík	-	1,0	51	3				3	3					1	923	54	15
HEP		1,0		3				3	3					1			
Skup./FTE		1,0		3,0				3,0	3,0								
Stehlík	-	0,05	36												96	1	6

Tabuľka: Oddelenie teoretickej fyziky/skupiny

Tabuľka: Oddelenie teoretickej fyziky – údaje celého oddelenia

A			В				C	D	E	F	G	Н	J	K
	Počet W	OS publ	ikácií 2 SCIM	016, kla AGO	sifikácia	podľa	Počet APVV A/B	Bilateral BAPVV/ MAD	Počet COST, .iné	Počet EU 2020 R/P	Počet PhD	Počet VŠ V/T	Počet SŠ	FTE
	Q1	Q2	Q3	Q4	Σ	Q1P								
Oddelenie oddelenie celkovo	13	6	3		22	12	1/1				6	8		7,25
FTE = 7,25 oddelenie / FTE	1,8	0,8			3,0	1,7								

organizovanie alebo spoluorganizovanie medzinárodných konferencií

- M. Hnatič, P. Kopčanský: International Conference, 18th Small Triangle Meeting on Theoretical Physics (STM 2016), Oct 16-19, 2016, Pticie, Slovakia; (MH, PK - organizing committee)
- M. Hnatič: International Conference "New Trends in High-Energy Physics", Oct 2-8, 2016, Budva, Becici, Montenegro

(MH - organizing committee)

IEP SAS

Vedecké postavenie

medzinárodná spolupráca

- M. Hnatič, P. Kopčanský, T. Lučivjanský: Transport phenomena in developed turbulence University of Helsinky, Helsinky, Finland
- M. Hnatič, P. Kopčanský, T. Lučivjanský: Study of diffusion processes in porous media. Analysis of stachastic combat models. Developed turbulence
 Department of Military Technology, National Defence
 University, Helsinky, Finland

R. Pinčák:
 Physics of nanostructures
 JINR Dubna, Russia

medzinárodná spolupráca

- M. Hnatič, P. Kopčanský, T. Lučivjanský, M. Jurčišin, E. Jurčišinová, R. Remecký, M. Stehlík:
 Quantum field theory and renormalization group in nonlinear dynamics and developed turbulence
 JINR Dubna, Russia
- M. Hnatič, T. Lučivjanský:

Methods of statistical physics and quantum field theory in theory of developed turbulence State University of Sankt Petersburg, Russia

• M. Stehlík:

Cosmic ray propagation in interplanetary space HAO NASU Kijev, Russia

medzinárodná spolupráca

J. Nemčík:

Nuclear effects at RHIC and LHC energies Czech Technical University in Prague, FNSPE, Prague, Czech Republic

J. Nemčík:

Dynamics of particle production in heavy ion collisions Universidad Téchnica Federico Santa María, Valparaíso, Chile

J. Nemčík:

Investigation of ISI effects in the DY process Lund University, Lund, Sweden

recenzie významných časopisov

Acta Physica Polonica,

Digital Signal Processing,

Economic modelling,

Eur. Phys. J. B,

Int. J. Thermophysics,

J. El. Mat.,

J. Magn. and Magn. Mat.,

J. Phys. A: Math. Gen.,

J. Stat. Phys.

Journal of Physics: Condensed Matter,

Nanotechnology,

Physica A; Physica B; Physica D

Phys. Rev. B; Phys. Rev. E,

Phys. Rev. Lett.,

Theor. and Math. Phys.

Ukončení doktorandi

 Ing. Michal Krelina [FJFI, Praha] (Nemčík) - obhájený [Jún 2016]

Medzinárodný projekt COST

 RADIOMAG - Multifunkcionalizované nanočastice pre magnetickú hypertermiu a nepriamu radiačnú terapiu Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy 11/2014 - 11/2018 zodpovedný riešitel': Peter Kopčanský

Medzinárodný projekt (Slovensko - Maďarsko - Taiwan)

 Magnetically active Anisotropic COmposite SYStems -MACOSYS

 (výzva M-era.Net Transnational Call 2012)
 09/2013 - 08/2016
 zodpovedný riešitel': Peter Kopčanský

Agentúra na podporu výskumu a vývoja

 APVV-0097-12 - Kolektívne javy vo viazaných elektrónových a spinových systémoch 2013 - 2016 zodpovedný riešitel': Pavol Farkašovský

Slovenská vedecká grantová agentúra

- VEGA 2/0045/13 Citlivost' kvapalných kryštálov s nanočasticami na vonkajšie magnetické pole, 2013 - 2016 zodpovedný riešitel': Peter Kopčanský
- VEGA 2/0020/14 Vlastnosti jadrovej matérie vytvorenej v interakciách s jadrovými terčíkmi pri vysokých energiách, 2014 - 2017

zodpovedný riešitel': Ján Nemčík

 VEGA 2/0093/13 - Štúdium vlastností turbulentných prostredí s narušenými symetriami, 2013 - 2016 zodpovedný riešitel': Marián Jurčišin

Výuka

- prednášky pre PhD. študentov PF UPJŠ Analytické a numerické metódy v teórii silne korelovaných elekrónových systémov
 P. Farkašovský
- prednášky na PF UPJŠ Všeobecná teória relativity, 2015-2016
 Matematická fyzika, 2015-2016
 Kozmológia, 2015-2016
 M. Jurčišin
- prednášky na PF UPJŠ -Kvantová teória pol'a Nerovnovážna štatistická fyzika M. Hnatič

Výuka

 prednášky pre PhD. študentov PF UPJŠ -Úvod do Štandardného modelu Kvantová chromodynamika
 Vybrané kapitoly z teoretickej fyziky
 Kvantová teória pol'a
 M. Hnatič

 výberová prednáška pre PhD. študentov Aplikovaná QCD pri vysokých energiách 2015-2016, 2016-2017
 Nemčík

J. Nemčík

Výstupy do spoločenskej praxe

M. Jurčšin, P. Kopčanský
 Členovia komisie VEGA

• M. Hnatič

Člen pracovnej skupiny Rady pre prírodné vedy APVV Člen vedeckej rady SÚJV Dubna

Člen komisie pre obhajobu doktorandských prác v

odboroch - Jadrová a subjadrová fyzika a Všeobecná a matematická fyzika

Spolugarant doktorandského štúdia - Jadrová a subjadrová

fyzika

Výstupy do spoločenskej praxe

P. Kopčanský

Podpredseda kolégia pre matematiku, fyziku a informatiku Člen International steering committee of magnetic fluid society

• P. Farkašovský

Člen komisie pre obhajoby doktorandských prác v odbore -Všeobecná a matematická fyzika

Člen komisie pre obhajoby Prof.

Garant doktorandského štúdia - Všeob. a mat. fyzika Člen stálej pracovnej skupiny Akreditačnej komisie, poradného orgánu vlády SR - pre oblasť výskumu 9.1 Fyzika

J. Nemčík

vedecký garant Centra fyziky relativistických jaderních srážek (CFRJS), FJFI, ČVUT, Praha

Systematic study of dilepton production Systematické štúdium produkcie dileptónov

V.P. Goncalves, J. Nemchik, R. Pasechnik

- 1. V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik; Phys. Rev. D94, 114009 (2016) [IF = 4.506]
- 2. E. Basso, V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik; Phys. Rev. D93, 094027 (2016) [IF = 4.506]
- 3. E. Basso, V.P. Goncalves, J. Nemchik, R. Pasechnik, M. Sumbera; Phys. Rev. D93, 034023 (2016). [IF = 4.506]
- 4.-5. E. Basso, V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik; EPJ Web Conf. 120 (2016) 03007 [WOS]; EPJ Web Conf. 120 (2016) 03006 [WOS]
- presented at the Fourth Annual Large Hadron Collider Physics LHCP2016, 13-18 June 2016, Lund, Sweden; PoS (LHCP2016) 227.
- presented at the Workshop Hot Quarks 2016, 12-17 September 2016, Sauth Padre Island TX, USA; will be published in Journal of Physics: Conference Series.
- presented at the 11th International Workshop on High-pT Physics in the RHIC & LHC Era,
- 12-15 April 2016, Brookhaven National Laboratory, Upton, NY 11973, USA
- presented at the 7th International Conference on Physics Opportunities at an

ElecTron-Ion-Collider (POETIC 2016), 14-18 Nov. 2016, Temple University, Philadelphia, USA.

kategória - základný výskum medzinárodná spolupráca

Inclusive dilepton production

Color dipole model

Oddelenie teoretickej fyzikyvýsledky za rok 2016 – p. 31/51

Numerical results vs. pp- data

Numerical results - predictions

shadowing - effect of quantum coherence

$$l_c = \frac{1}{x_2 m_p} \frac{(M_{l\bar{l}}^2 + p_T^2)(1 - \alpha)}{(1 - \alpha)M_{l\bar{l}}^2 + \alpha^2 m_q^2 + p_T^2}$$

Init. state E-loss leads to an additional suppression at large x_F or x_T [B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C**72**, 054606 (2005)]

Init. state E-loss leads to an additional suppression at large x_F or x_T

[B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

Init. state E-loss leads to an additional suppression at large x_F or x_T

[B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

Init. state E-loss leads to an additional suppression at large x_F or x_T

[B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

Suppression at forward rapidities

Dilepton production in pA collisions

Initial state effects

Init. state E-loss leads to an additional suppression at large x_F or x_T

[B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

4 4.5

Suppression at forward rapidities

Dilepton production in pA collisions

Initial state effects

Init. state E-loss leads to an additional suppression at large x_F or x_T

[B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

Suppression at forward rapidities

Dilepton production in pA collisions

Initial state effects

Init. state E-loss leads to an additional suppression at large x_F or x_T

[B. Kopeliovich, J.N., I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

[B.Z. Kopeliovich, J.N.; J.Phys. G38 e04310 ke(2011/1) sldky za rok 2016 - p. 35/51

Numerical results vs. pA- data

Absolute differential cross sections

Nucleus-to-nucleon ratios

Oddelenie teoretickej fyzikyvýsledky za rok 2016 – p. 36/51

Numerical results - predictions

 $R_{A/B}(p_T)$ for real and virtual dileptons produced in p-A collisions at different centralities.

Numerical results - predictions

- \blacksquare we included for the first time the Z^0 contribution to the DY process
- we found and analyzed a characteristic double-peak structure of the correlation function around $\Delta \Phi = \pi$ at low $M \sim Q_S$ and for the pion production at large forward rapidities.
- we provided for the first time an extensive phenomenological study of the shadowing and ISI effects in dilepton production off nuclei at high energies.
- the double-peak structure of the correlation function can probe the magnitude of nuclear broadening, which has a direct connection with properties of the nuclear medium.
- at medium energies when the CL $l_c \leq R_A$, the DY process off nuclei is studied for the first time within the rigorous Green function formalism implying no restrictions to the CL.
- we have obtained a good description of available data. The lot of predictions can be tested by recent measurements at RHIC and LHC, by the planned AFTER@LHC experiment and by the LHCb Collaboration in recent studies of fixed-target proton-gas collisions.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Oddelenie teoretickej fyzikyvýsledky za rok 2016 – p. 39/51

SQ (~

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody

Michal Hnatič a kolektív

Košice 15. december 2016

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody I

- Obnovenie záujmu o teoretické štúdium Bose kondezátov v supratekutom stave, pozorovaných v héliu ⁴*He*, po ich experimentálnom objave v 90-ých rokoch v ochladených zkondenzovaných zriedených plynoch.
- Supratekutosť sa objavuje pri fázovom prechode v lambda (λ) kritickom bode, v ktorom viskozita ide k nule

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody I

- Shuttle experiment (1992): v beztiažovom stave (dôležitá podmienka pre presnosť merania) zmeraný parameter α súvisiaci s lambda bodom. Jeho dnešná hodnota je α = -0.0127 a priamo súvisí s pevnými bodmi renormalizačnej grupy (RG). Vypočítaná hodnota v ramci kritickej statiky je vo veľmi dobrej zhode s experimentálnou hodnotou.
- Problem je v tom, že doteraz nie je jasné, aký model kritickej dynamiky (E alebo F podľa ustanovenej klasifikácie) a ktoré pevné body RG (je ich niekoľko) opisujú reálnu fyziikálnu situáciu.

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody I

Výsledky nášho výskumu:

- Odvodenie, založené na mikroskopickom kvantovo-mechanickom opise vedie k efektívnému makroskopickému modelu F. Model E je jeho limitným prípadom.
- Zovšeobecnenie F modelu zahrňujúceho hydrodynamické fluktuácie podriaď ujúce sa Navier Stokesovej stochastickej rovnice.
- Hydrodynamické (turbulentné, tepelné) fluktuácie významne ovplyvňujú správanie sa fyzikálneho systému v okoli bodu fázového prechodu. Pri doterajších jedno- a dvojslučkových priblíženiach nie je možné rozhodnúť, ktorý pevný bod RG (je ich niekoľko) opisuje reálnu fyzikálnu situáciu. Je nevyhnutné uskutočniť výpočty v ďalšom rade poruchovej teórie.

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody II

Perkolácia: prietok tekutiny v pórovitých prostrediach, šírenie epidémií, priebeh chemických reakcií, prechody medzi vodivým a nevodivým stavom v prostrediach s náhodnými fluktuáciami, javy v ekonomike, na finančných burzach, v sociologií

Základné charakteristiky

- Prechody medzi aktívnou a pasívnou fázou (vodivý-nevodivý, pokračovanie alebo zastavenie epidémie atď.).
- Univerzalita nezavislost' od detailov systému, ale len, napr. od dimenzie priestoru a symetrie
- Úloha: Určiť body prechodov medzi rôznymi aktívnymi fazami, resp. neaktívnou fázou a správanie sa parametra usporiadania (napr. počtu nakazených jedincov) v okoli bodou fázového prechodu.

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody II

Výsledky nášho výskumu:

- Zovšeobecnenie známeho Gribovho modelu pre opis perkolácie na prípad existencie turbulentných pohybov bázového prostredia.
- Vplyv stlačiteľ nosti na rýchlosť prebiehajúcich javov (rýchlosť prietoku, rýchlosť šírenia infekcie)
- Kompletná analýza možných režimov v okoli bodu fázového prechodu prostredníctvom výpočtu pevných bodov RG v dvojslučkovom pribížení. Ich klasifikácia.
- Nájdenie nových tried univerzality (doteraz neurčených kritických režimov).

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody III

Vplyv narušenia zrkadlovej symetrie elektricky vodivého turbulentného prostredia na spravanie sa štatistických korelácii magnetického poľa, resp. poľa koncentrácie prímesných častíc

- Dôležitá veličina: efektívne Prandtlovo číslo pomer koeficientov viskozity a difúzie.
- Úloha: Nájdenie stabilných škálovacích režimov v inerciálnom intervale vlnových vektorov turbulentného prostredia

Vplyv hydrodynamických fluktuácií a narušenia symetrií na kritické režimy a fázové prechody II

Výsledky nášho výskumu:

- Výpočet pevných bodov RG modelu A pre jednotný popis magnetickej hydrodynamiky, vektorovej a skalárnej prímesi pre prípad narušenej zrkadlovej symetrie (helicita)
- Výpočet Prandtlovho čísla v dvojslučkovom priblížení.
- Záver: Helicita rozšíruje oblasť stability Kolmogorovho škálovacieho režimu a značne meni hodnotu efektívného Prandlovho čísla. V závislosti od parametra A, určujúceho veľkosť nelinearity v pôvodných rovniciach jeho hodnota s rastom parametra helicity môže narastať resp. klesať.

Publikačné a iné výstupy

- M. Dančo, M. Hnatič, M. V. Komarova, T. Lučivjanský, M. Yu. Nalimov Superfluid Phase Transition with Activated Velocity Fluctuations: Renormalization Group Approach, PHYSICAL REVIEW E 93, 012109 (2016)
- N. V. Antonov, M. Hnatič, A. S. Kapustin, T. Lučivjanský, L. Mižišin Directed percolation process advected by the Navier-Stokes velocity ensemble: Effect of compressibility, PHYSICAL REVIEW E 93, 012151 (2016)
- M. Hnatič, P. Zalom Helical turbulent Prandtl number in the A model of passive vector advection PHYSICAL REVIEW E 94 053113 (2016)
- M. Hnatič, J. Honkonen, T. Lučivjanský Advanced field theoretical methods in stochastic dynamics and theory of developed Turbulence, Acta Physica Slovaca 66, No.2, 69 – 264 (2016) (195 strán), prehľadový článok

Publikačné a iné výstupy

- L. Ts. Adzhemyan, M. Hnatic, M. Kompaniets, T. Lucivjansky, L. Mizisin Numerical calculation of critical exponents of percolation process in the framework renormalization group approach. European Physical Journal: Web of conferences 108 (2016) 02004 DOI: http://dx.doi.org/10.1051/epjconf/201610802004
- L. Ts. Adzhemyan, M. Danco, M. Hnatic, E. V. Ivanova, M. V. Kompaniets Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics European Physical Journal: Web of conferences108 (2016) 02005 DOI: http://dx.doi.org/10.1051/epjconf/201610802005
- N. V. Antonov, M. Hnatich, A. S. Kapustin, T. Lučivjanský, L. Mižišin The directed bond percolation subjected to the synthetic compressible velocity fluctuations: Renormalization group approach, prijaté do časopisu Theoretical and Mathematical Physics

Publikačné a iné výstupy

Konferencie:

- M. Hnatič, Quantum-field Theory Methods in Classical Physics. Prednáška na medzinárodnej Konferencii "New Trends in High-Energy Physics", Budva, Čierna hora, 2-8. október 2016
- M. Hnatič, Klasická fyzika z pohľadu kvantovej teórie poľa, Plenárna prednáška na 22. konferencii Slovenských fyzikov, 5. – 8. september 2016, Košice
- T. Lučivjanský, Effects of finite correlation time and compressibility on the active-to-absorbing-state phase transition The XX International Scientific Conference of Young Scientists and Specialists (AYSS-2016), 14-18 March 2016, Dubna Prvé miesto v rámci kategórie: Theoretical Research medzi 200 mladými účastníkmi
- M. Dančo Critical Dynamics of Planar Magnets: Renormalization Group Analysis. 6th Czech and Slovak Conference on Magnetism, June 13-172016, Košice (poster)

Space-time development of hadronization

 I. stage ⇒ the quark regererates its color field, which has been stripped off in a hard reaction.

 \Rightarrow the quark intensively radiates gluons and dissipates energy, either in vacuum or in a medium.

 \Rightarrow multiple interactions in the medium induce additional, usually less intensive, radiation.

 \Rightarrow the loss of energy ceases at the moment, which is called the production time t_p , when the q picks up an \bar{q} neutralizing its color.

$$t_p \lesssim rac{E}{\langle |dE/dt|
angle} \left(1-z_h
ight)$$

Space-time development of hadronization

II. stage ⇒ begins with production of colorless dipole (also called prehadron), which does not have either the wave function or hadronic mass.

 $\Rightarrow \text{ it takes the formation time } t_f \text{ to develop both.} \\\Rightarrow \text{ can be described within a simplified model or the path integral method.} \\2z_h E$

$$\hat{z}_f \lesssim rac{2 z_h E}{m_{h*}^2 - m_h^2}$$

 \Rightarrow Lorents boosting factor & the uncertainty principle - it takes a proper time $t_f^* = 1/(m_{h*} - m_h)$ to resolve between these two levels.