Publikácie pracovníkov oddelenia za rok 2019

  1. H. ČENČARIKOVÁ and J. STREČKA, Conventional and rotating magnetoelectric effect of a half-filled spin-electron model on a doubly decorated square lattice, Physics Letters A 383 (2019) 125957 [IF/MedIF(2018)=2.087/1.575=1.325] (5 pages).
  2. P. FARKAŠOVSKÝ, The Influence of Long-Range Hopping on Ferromagnetism in the Hubbard Model on the Generalized Shastry-Sutherland Lattice, Journal of Superconductivity and Novel Magnetism 32 (2019) 1007 [IF/MedIF(2018)=1.13/2.242=0.504] (5 pages).
  3. P. FARKAŠOVSKÝ, Pressure induced valence and metal-insulator transitions in the Falicov-Kimball model with nonlocal hybridization, Solid State Communications 287 (2019) 68 [IF/MedIF(2018)=1.433/2.242=0.639] (4 pages).
  4. P. FARKAŠOVSKÝ and Ľ. REGECIOVÁ, Magnetization plateaus and phase diagrams of the extended Ising model on the Shastry-Sutherland lattice: effects of long-range interactions, The European Physical Journal B 92 (2019) 33 [IF/MedIF(2018)=1.44/2.242=0.642] (6 pages).
  5. P. FARKAŠOVSKÝ, The infuence of nonlocal interactions on valence transitions and formation of excitonic bound states in the generalized Falicov Kimball model, The European Physical Journal B 92 (2019) 141 [IF/MedIF(2018)=1.44/2.242=0.642] (5 pages).
  6. L. REGECIOVÁ and P. FARKAŠOVSKÝ, Magnetic phase diagram of the Ising model with the long-range RKKY interaction, The European Physical Journal B 92 (2019) 184 [IF/MedIF(2018)=1.44/2.242=0.642] (6 pages).
  7. E. JURČIŠINOVÁ and M. JURČIŠIN, Applicability of effective field theory cluster approximations for investigation of geometrically frustrated magnetic systems: Antiferromagnetic model on kagome lattice, Physica A 514 (2019) 644 [IF/MedIF(2018)=2.5/1.575=1.587] (14 pages).
  8. A. BOBÁK, E. JURČIŠINOVÁM. JURČIŠIN, M. ŽUKOVIČ, and T. BALCERZAK, An investigation of the  transverse Ising antiferromagnet on the honeycomb lattice with frustration, Physica A 518 (2019) 13  [IF/MedIF(2018)=2.5/1.575=1.587] (9 pages).
  9. E. JURČIŠINOVÁ and M. JURČIŠIN, Relevance of recursive lattice approximations for description of frustrated magnetic systems: Star kagome-like recursive lattice approximation, Physica A 521 (2019) 330 [IF/MedIF(2018)=2.5/1.575=1.587] (22 pages).
  10. E. JURČIŠINOVÁ and M. JURČIŠIN, A general view on the critical behavior in the effective field theory approximation of the Ising model with arbitrary coordination number, Physica A 525 (2019) 1399  [IF/MedIF(2018)=2.5/1.575=1.587] (6 pages).
  11. E. JURČIŠINOVÁ and M. JURČIŠIN, Consequences of residual-entropy hierarchy violation for behavior of the specific heat capacity in frustrated magnetic systems: An exact theoretical analysis, Physical Review E 99 (2019) 042151  [IF/MedIF(2018)=2.353/1.231=1.911] (16 pages).
  12. E. JURČIŠINOVÁ and M. JURČIŠIN, Entropy properties of antiferromagnetic model on kagome lattice: Effective-field theory approach, Physica A 535 (2019) 122430   [IF/MedIF(2018)=2.5/1.575=1.587] (10 pages).
  13. E. JURČIŠINOVÁ and M. JURČIŠIN, Influence of dilution on magnetization properties of geometrically frustrated magnetic systems: Effective-field theory cluster approximations on kagome lattice, Physics Letters A 383 (2019) 125972 [IF/MedIF(2018)=2.087/1.575=1.325] (9 pages).
  14. E. JURČIŠINOVÁ, M. JURČIŠIN, and R. REMECKÝ, Turbulent Prandtl Number in Two Spatial Dimensions: Two-loop Renormalization Group Analysis,  Theor. Math. Phys. 200 (2019) 1139 [IF/MedIF(2018)=0.901/1.231=0.732] (8 pages).
  15. E. JURČIŠINOVÁ, M. JURČIŠIN, and M. MENKYNA, Influence of Finite-Time Velocity Correlations on Scaling Properties of Magnetic Field in the Kazantsev-Kraichnan Model: Two-Loop Renormalization Group Analysis,
    Theor. Math. Phys. 200 (2019) 1126 [IF/MedIF(2018)=0.901/1.231=0.732] (13 pages).
  16. A. SEPEHRI, R. PINČÁK, and T. GHAFFARY, Information loss in black hole due to transition point, International Journal of Geometric Methods in Modern Physics 16 (2019) 1950026 [IF/MedIF(2018)=1.022/1.231=0.83] (7 pages).
  17. R. PINČÁK, K. KANJAMAPORNKUL, and E. BARTOŠ, Forecasting Laurent Polynomial in the Chern–Simons Current of V3 Loop Time Series, Annalen der Physik 531 (2019) 1800375  [IF/MedIF(2018)=3.276/1.575=2.08] (23 pages).
  18. R. PINČÁK and K. KANJAMAPORNKUL, GARCH in spinor field, International Journal of Geometric Methods in Modern Physics 16 (2019) 1950099 [IF/MedIF(2018)=1.022/1.231=0.83] (48 pages).


Odborné publikácie vydané na Ústave experimentálnej fyziky SAV:

  1. H. ČENČARIKOVÁ, Počítačová Fyzika a Modelovanie, ÚEF SAV (2019), ISBN: 978-80-89656-24-0